

Ipopituitarismo « Non fermarsi alle apparenze»

Bocchini Sarah UOC Endocrinologia IRCCS Ospedale Bambino Gesu

BACKGROUND

- L'ipopituitarismo include tutte quelle condizioni cliniche che provocano un *deficit parziale* o *totale* della ghiandola ipofisaria provocando riduzione o assenza della secrezione ormonale.
- ❖ L'ipopituitarismo può essere il risultato di una disfunzione ipofisaria o ipotalamica, alcune posso essere anomalie acquisite o ereditarie e possono provocare deficit isolato o multipli degli ormoni ipofisari.
- L'ipopituitarismo può determinare l'insufficienza surrenalica centrale o secondaria ,causata da deficit di ACTH, ipotiroidismo centrale, ipogonadismo centrale ,deficit dell'ormone della crescita (GHD), diabete insipido centrale.

Table 1. Etiology of hypopituitarism. Congenital [1,7,16] Isolated pituitary hormone deficiency [1,7] KAL, DAX-1, GH-1, GnRH, GHRH and TRH receptor mutations Prader-Willi and Bardet-Biedl syndromes Single or multiple pituitary hormone deficiency [1,7] PIT-1, PROP-1, HESX-1, SOX 2 mutations Neoplastic [1,7,17-20] Pituitary adenoma (Functioning and non-functioning) Craniopharyngioma Meningioma Cysts (Rathke's cleft, arachnoid, epidermoid, dermoid) Germinoma Glioma Astrocytoma Ganglioneuroma Paraganglioma Teratoma Chordoma/Chondrosarcoma Pituicytoma Ependymoma Pituitary carcinoma Metastases Infiltrative/Inflammatory/Immunological [1,7,13,21] Autoimmune (hymphocytic hypophysitis, pituitary and POUF-1 antibodies) Granulomatous (granulomatosis with polyangiitis, sarcoidosis) Xanthomatous hypophysitis Necrotising hypophysitis IgG4-related hypophysitis Sarcoidosis Haemochromatosis Langerhans cell histiocytosis Giant cell granuloma Infectious [1,7] Bacterial Fungal Parasites Tuberculosis Syphilis Vascular [1,7,22] Pituitary apoplexy Sheehan's syndrome Intrasellar carotid artery Aneurysm Subarachnoid haemorrhage Traumatic [1,7,23] Head injury

Empty sella [1,7,24]

Eziologia dell'ipopituitarismo

Medications [1,7,25,26]

Opiates (primarily gonadotropins, ACTH, GH)
GCs (ACTH only)
Megestrol acetate (ACTH only)
Somatostatin analogues (GH, ACTH, TSH)
CTLA-4 blockers (ACTH, TSH, LH/FSH)

Iatrogenic [1,7,14,26,27]

Surgery

Radiotherapy (Pituitary, nasopharyngeal, cranial) Immune Checkpoint Inhibitors (CTLA-4 blockers)

Idiopathic [1,7]

Alexandraki KI, Grossman A. Management of Hypopituitarism. J Clin Med. 2019;8(12):2153. Published 2019 Dec 5. doi:10.3390/icm8122153

Quando sospetto GHD ?

Nota 39

STATURA:

Sesso
Sesso

*< 2 DS con rallentamento della VC al di sotto di 1 DS

■La riduzione progressiva della VC di 2 o
1.5 DS in due anni (in assenza di bassa statura, può essere un criterio di sospetto

Diagnosi deficit GH

Nota 39

Età evolutiva

bassa statura da deficit di GH è definito dai seguenti parametri clinico-auxologici e di laboratorio:

I. Parametri clinico - auxologici:

- a) statura <- 3 DS
- oppure
- b) statura <2 DS e velocità di crescita/anno <-1,0 DS per età e sesso valutata a distanza di almeno 6 mesi o una riduzione della statura di 0,5 DS/anno nei bambini di età superiore a due anni. oppure
- c) Statura inferiore a -1,5 DS rispetto al target genetico e velocità di crescita/anno <-2 DS o -1,5 DS dopo 2 anni consecutivi.
- d) velocità di crescita/anno <-2 DS o <-1,5 DS dopo 2 anni consecutivi, anche in assenza di bassa statura e dopo aver escluso altre forme morbose come causa del deficit di crescita; nei primi 2 anni di vita, sarà sufficiente fare riferimento alla progressiva decelerazione della velocità di crescita (la letteratura non fornisce a riguardo dati definitivi in termini di DS); oppure
- e) malformazioni/lesioni ipotalamo-ipofisario dimostrate a livello neuro-radiologico; associate a

II. Parametri di laboratorio:

- a) risposta di GH < 8 µg/L a due test farmacologici eseguiti in giorni differenti
- b) risposta di GH < 20 µg/L nel caso il test impiegato sia GHRH + arginina

ABSTRACT

- A. P. bambino di 12aa e 11 mesi, affetto da GHD ed Iposurrenalismo centrale
- Valutato in ambulatorio auxologico dall'età di 9 anni per scarso accrescimento
- Ha eseguito multipli test di stimolo per GH
- Ha eseguito RMN encefalo-ipofisi con mdc con riscontro di grave ipoplasia ipofisaria
- Riscontro di Iposurrenalismo centrale

CASO CLINICO

I visita ambulatoriale all'età di 9 aa

- -PN 3960, nato a termine, parto naturale, difficoltà nello svezzamento.
- -Bronchite asmatica in terapia con singulair, broncovaleas e fluspiral, Intervento di adenoidectomia nel 2014 e nel 2015 e tonsillectomia drenaggio timpanico

Scarso accrescimento staturo-ponderale fin da piccolo

Madre 165 cm M 14aa

Padre175 cm

1 fratello di 5 anni in abs

TH 176.5 cm

Non patologie degne di nota in famiglia

Fam per DM2 (nonna materna)

Esami di primo livello:

EC:9aa

TSH 2.09, Ft4 1.27, IGF1 69, celiachia neg,

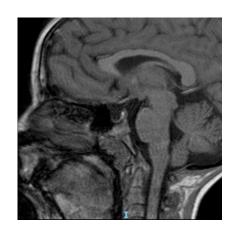
EO: 8aa mesi VS 10aae 2 mesi (riletta GeP)

Stadio puberale: ph1, g1, Vt 2 cc

Peso:25.8 Kg(3°-25°)

Altezza:125.8 cm(<3°)

Esami di II livello:


- Ha eseguito in data 31/05/2018 test all'arginina: picco GH 3.67 ng/ml, IGF1 51 ng/ml
- Effettuato nel sospetto di GHD secondo test di stimolo per GH con clonidina in data 30 luglio 2018 con risultato nella norma (picco di GH 10,5 ng/ml)

FOLLOW UP

All'età di 11aa torna per controllo della VC e si rilevava una riduzione della VC (2 cm/anno), per cui si decideva di eseguire RMN encefalo con mdc:

«L'adenoipofisi presenta profilo superiore concavo, raggiunge un diametro craniocaudale massimo di circa 2 mm e si caratterizza per un regolare segnale nelle condizioni basali e per un omogeneo potenziamento nelle immagini acquisite dopo contrasto.

Il peduncolo ipofisario, di regolare spessore, è in asse. Lo spontaneo ipersegnale nelle immagini T1 basali corrispondente alla neuroipofisi è regolarmente riconoscibile.

- Alla luce della RMN si decideva di ripetere test di stimolo per GH
- Test arginina con picco GH 3.1 ng/ml

EC:11,3aa

Peso:27,5 Kg(3°-25°)

Altezza:132 cm(<3°)

Stadio puberale: ph1, g1, Vt 4 cc

VC 3,2 cm/anno

EO 9,7aa VS 11,3aa

Test alla clonidina con picco GH 6.28 ng/ml

Agli esami basali riscontro di:

- ACTH 4.55 pg/ml
- Cortisolo 4.4 mcg/dl
- IGF1 (ECLIA) 103.0 ng/mL
- TSH 1,91 µIU/mL
- FT4 1,29 ng/dL

Pertanto si **organizzava ACTH test a basse dosi** (1 mcg) con riscontro di **picco di cortisolo 10 mcg/dl**)

- **EC**: 12aa
 - -altezza 132,6 cm(<3°)
 - -peso 28 kg (<3°)
 - -Superficie corporea 1 mq

Visto il quadro di ipoplasia ipofisaria (alla RMN) con riduzione della VC crescita, deficit di GH ai due test di stimolo e iposurrenalismo centrale

- inizia **Hydrocortisone** 5 mg ore 8.00 + 2 mg ore 15.00 + 2 mg ore 22.00
- Norditropin Nordiflex 1 mg al dì per 5 gg/sett= 0,025 mg/ kg/die

FOLLOW UP

EC: 12,11aa

Peso:33,5 Kg (<3°)

Altezza: 138,8 cm (<3°)

BSA 1,1 mq

P2, g2, Vt 8 ml

Ripresa della VC (circa 7,4 cm/anno)

Iniziale attivazione puberale

Si incrementava il dosaggio del GH e dell'HC

- Norditropin Nordiflex 1,4 mg per 5 volte alla settimana pari a 0,029 mg/kg/die
- Hydorcortisone 5 mg ore 8.00 + 2,5 mg ore 15.00 + 2,5 mg ore 22.00 (circa 10 mg/m2)
- Si programma DH a distanza per eseguire LHRH test ed RX mano per rivalutazione dell'evoluzione puberale.

CONCLUSIONI

In caso di bassa statura, rallentamento della VC, nonostante una normale risposta ai test di stimolo per GH è opportuno una valutazione con RMN encefalo , in grado di identificare eventuali alterazioni morfo-strutturali della porzione ipotalamo-ipofisaria.

In caso di deficit di GH documentato alla risposta patologica ai due test di stimolo , si raccomanda inizio di terapia con GH al dosaggio di 0.16-0.24 mg/kg/settimana ($22-35 \mu g/kg/die$).

In caso di risposta patologica all'ACTH test (1 mcg) è fortemente suggestiva una risposta del cortisolo <16 mcg/dl .

Per l'iposurrenalismo centrale la dose raccomandata è di 10-15 mg/m2 divisa in 2-3 somministrazioni die.

BIBLIOGRAFIA

- Alexandraki KI, Grossman A. Management of Hypopituitarism. J Clin Med. 2019;8(12):2153. Published 2019 Dec 5. doi:10.3390/jcm8122153
- Growth Hormone Research Society. Consensus guidelines for the diagnosis and treatment of growth hormone (GH) deficiency in childhood and adolescence: Summary statement of the GH Research Society. GH Research Society. J Clin Endocrinol Metab. 2000;85:3990–3.
- Evolving pituitary hormone deficits in primarily isolated GHD: a review and experts' consensus, Mol Cell Ped. 2020 Dec; 7: 16.
- Guidelines for Growth Hormone and Insulin-Like Growth Factor-I Treatment in Children and Adolescents: Growth Hormone Deficiency, Idiopathic Short Stature, and Primary Insulin-Like Growth Factor-I Deficiency, Horm Res Paediatr 2016;86:361–397 DOI: 10.1159/000452150
- Adrenal insufficiency: Physiology, clinical presentation and diagnostic challenges
 J Thompsona,b, Julie Martin-Gracea,b,c, Rosemary Dineena,b, Mark Sherlocka,b, Christopher,
 Clinica Chimica Acta 505 (2020) 78–91